Motion by curvature of planar networks

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motion by Curvature of Planar Networks II

We prove that the curvature flow of an embedded planar network of three curves connected through a triple junction, with fixed endpoints on the boundary of a given strictly convex domain, exists smooth as long as the lengths of the three curves stay far from zero. If this is the case for all times, then the evolution exists for all times and the network converges to the Steiner minimal connecti...

متن کامل

Motion by Curvature of Planar Networks

We consider the motion by curvature of a network of smooth curves with multiple junctions in the plane, that is, the geometric gradient flow associated to the length functional. Such a flow represents the evolution of a two–dimensional multiphase system where the energy is simply the sum of the lengths of the interfaces, in particular it is a possible model for the growth of grain boundaries. M...

متن کامل

Motion of Level Set by General Curvature

In this paper, we study the motion of level sets by general curvature. The difficulty in this setting is for a general curvature function, it’s only well defined in an admissible cone. In order to extend the existence result to outside the cone we introduce a new approximation function f̂ (see (3.1)). Moreover, using the idea in [5], we give an elliptic approach for the Ben-Andrews’ non-collapsi...

متن کامل

Motion of spirals by crystalline curvature

Modem physics théories claim that the dynamics of interfaces between the two-phase is described by the évolution équations involving the curvature and various kinematic énergies. We consider the motion of spiral-shaped polygonal curves by its crystalline curvature, which deserves a mathematical model of real crystals. Exploiting the comparison principle, we show the local existence and uniquene...

متن کامل

Motion of Hypersurfaces by Gauss Curvature

We consider n-dimensional convex Euclidean hypersurfaces moving with normal velocity proportional to a positive power α of the Gauss curvature. We prove that hypersurfaces contract to points in finite time, and for α ∈ (1/(n + 2], 1/n] we also prove that in the limit the solutions evolve purely by homothetic contraction to the final point. We prove existence and uniqueness of solutions for non-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE

سال: 2009

ISSN: 2036-2145,0391-173X

DOI: 10.2422/2036-2145.2004.2.01